Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38660806

RESUMO

BACKGROUND: Atherosclerosis is the major underlying pathology of cardiovascular disease and is driven by dyslipidemia and inflammation. Inhibition of the immunoproteasome, a proteasome variant that is predominantly expressed by immune cells and plays an important role in antigen presentation, has been shown to have immunosuppressive effects. METHODS: We assessed the effect of ONX-0914, an inhibitor of the immunoproteasomal catalytic subunits LMP7 (proteasome subunit ß5i/large multifunctional peptidase 7) and LMP2 (proteasome subunit ß1i/large multifunctional peptidase 2), on atherosclerosis and metabolism in LDLr-/- and APOE*3-Leiden.CETP mice. RESULTS: ONX-0914 treatment significantly reduced atherosclerosis, reduced dendritic cell and macrophage levels and their activation, as well as the levels of antigen-experienced T cells during early plaque formation, and Th1 cells in advanced atherosclerosis in young and aged mice in various immune compartments. Additionally, ONX-0914 treatment led to a strong reduction in white adipose tissue mass and adipocyte progenitors, which coincided with neutrophil and macrophage accumulation in white adipose tissue. ONX-0914 reduced intestinal triglyceride uptake and gastric emptying, likely contributing to the reduction in white adipose tissue mass, as ONX-0914 did not increase energy expenditure or reduce total food intake. Concomitant with the reduction in white adipose tissue mass upon ONX-0914 treatment, we observed improvements in markers of metabolic syndrome, including lowered plasma triglyceride levels, insulin levels, and fasting blood glucose. CONCLUSIONS: We propose that immunoproteasomal inhibition reduces 3 major causes underlying cardiovascular disease, dyslipidemia, metabolic syndrome, and inflammation and is a new target in drug development for atherosclerosis treatment.

2.
Nat Commun ; 15(1): 1897, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429282

RESUMO

Kidney filtration is ensured by the interaction of podocytes, endothelial and mesangial cells. Immunoglobulin accumulation at the filtration barrier is pathognomonic for glomerular injury. The mechanisms that regulate filter permeability are unknown. Here, we identify a pivotal role for the proteasome in a specific cell type. Combining genetic and inhibitor-based human, pig, mouse, and Drosophila models we demonstrate that the proteasome maintains filtration barrier integrity, with podocytes requiring the constitutive and glomerular endothelial cells the immunoproteasomal activity. Endothelial immunoproteasome deficiency as well as proteasome inhibition disrupt the filtration barrier in mice, resulting in pathologic immunoglobulin deposition. Mechanistically, we observe reduced endocytic activity, which leads to altered membrane recycling and endocytic receptor turnover. This work expands the concept of the (immuno)proteasome as a control protease orchestrating protein degradation and antigen presentation and endocytosis, providing new therapeutic targets to treat disease-associated glomerular protein accumulations.


Assuntos
Nefropatias , Complexo de Endopeptidases do Proteassoma , Camundongos , Humanos , Animais , Suínos , Células Endoteliais , Glomérulos Renais/patologia , Nefropatias/patologia , Endocitose , Imunoglobulinas
3.
Front Mol Biosci ; 11: 1148948, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516190

RESUMO

Proteasome degradation is an integral part of cellular growth and function. Proteasomal intervention may mitigate adverse myocardial remodeling, but is associated with the onset of heart failure. Previously, we have demonstrated that increasing abundance of cardiac Lmp2 and its incorporation into proteasome complexes is an endogenous mechanism for proteasome regulation during hypertrophic remodeling of the heart induced by chronic ß-adrenoreceptor stimulation. Here, we investigated whether Lmp2 is required for myocardial remodeling not driven by inflammation and show that Lmp2 is a tipping element for growth and function in the heart but not for proteasome insufficiency. While it has no apparent impact under unchallenged conditions, myocardial remodeling without Lmp2 exacerbates hypertrophy and restricts cardiac function. Under chronic ß-adrenoreceptor stimulation, as seen in the development of cardiovascular disease and the manifestation of heart failure, genetic ablation of Lmp2 in mice caused augmented concentric hypertrophy of the left ventricle. While the heart rate was similarly elevated as in wildtype, myocardial contractility was not maintained without Lmp2, and apparently uncoupled of the ß-adrenergic response. Normalized to the exacerbated myocardial mass, contractility was reduced by 41% of the pretreatment level, but would appear preserved at absolute level. The lack of Lmp2 interfered with elevated 26S proteasome activities during early cardiac remodeling reported previously, but did not cause bulk proteasome insufficiency, suggesting the Lmp2 containing proteasome subpopulation is required for a selected group of proteins to be degraded. In the myocardial interstitium, augmented collagen deposition suggested matrix stiffening in the absence of Lmp2. Indeed, echocardiography of left ventricular peak relaxation velocity (circumferential strain rate) was reduced in this treatment group. Overall, targeting Lmp2 in a condition mimicking chronic ß-adrenoreceptor stimulation exhibited the onset of heart failure. Anticancer therapy inhibiting proteasome activity, including Lmp2, is associated with adverse cardiac events, in particular heart failure. Sparing Lmp2 may be an avenue to reduce adverse cardiac events when chronic sympathetic nervous system activation cannot be excluded.

4.
Nat Commun ; 14(1): 8039, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052772

RESUMO

Monoacylglycerol lipase (MAGL) regulates endocannabinoid 2-arachidonoylglycerol (2-AG) and eicosanoid signalling. MAGL inhibition provides therapeutic opportunities but clinical potential is limited by central nervous system (CNS)-mediated side effects. Here, we report the discovery of LEI-515, a peripherally restricted, reversible MAGL inhibitor, using high throughput screening and a medicinal chemistry programme. LEI-515 increased 2-AG levels in peripheral organs, but not mouse brain. LEI-515 attenuated liver necrosis, oxidative stress and inflammation in a CCl4-induced acute liver injury model. LEI-515 suppressed chemotherapy-induced neuropathic nociception in mice without inducing cardinal signs of CB1 activation. Antinociceptive efficacy of LEI-515 was blocked by CB2, but not CB1, antagonists. The CB1 antagonist rimonabant precipitated signs of physical dependence in mice treated chronically with a global MAGL inhibitor (JZL184), and an orthosteric cannabinoid agonist (WIN55,212-2), but not with LEI-515. Our data support targeting peripheral MAGL as a promising therapeutic strategy for developing safe and effective anti-inflammatory and analgesic agents.


Assuntos
Monoacilglicerol Lipases , Monoglicerídeos , Animais , Camundongos , Rimonabanto , Endocanabinoides , Analgésicos/farmacologia , Receptor CB1 de Canabinoide , Camundongos Endogâmicos C57BL
5.
Org Biomol Chem ; 21(38): 7813-7820, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37724332

RESUMO

Acid ß-galactosidase (GLB1) and galactocerebrosidase (GALC) are retaining exo-ß-galactosidases involved in lysosomal glycoconjugate metabolism. Deficiency of GLB1 may result in the lysosomal storage disorders GM1 gangliosidosis, Morquio B syndrome, and galactosialidosis, and deficiency of GALC may result in Krabbe disease. Activity-based protein profiling (ABPP) is a powerful technique to assess the activity of retaining glycosidases in relation to health and disease. This work describes the use of fluorescent and biotin-carrying activity-based probes (ABPs) to assess the activity of both GLB1 and GALC in cell lysates, culture media, and tissue extracts. The reported ABPs, which complement the growing list of retaining glycosidase ABPs based on configurational isomers of cyclophellitol, should assist in fundamental and clinical research on various ß-galactosidases, whose inherited deficiencies cause debilitating lysosomal storage disorders.


Assuntos
Gangliosidose GM1 , Leucodistrofia de Células Globoides , Doenças por Armazenamento dos Lisossomos , Mucopolissacaridose IV , Humanos , beta-Galactosidase/metabolismo , Galactosilceramidase
7.
Nat Commun ; 14(1): 2114, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055432

RESUMO

Little is known about the mechanistic significance of the ubiquitin proteasome system (UPS) in a kidney autoimmune environment. In membranous nephropathy (MN), autoantibodies target podocytes of the glomerular filter resulting in proteinuria. Converging biochemical, structural, mouse pathomechanistic, and clinical information we report that the deubiquitinase Ubiquitin C-terminal hydrolase L1 (UCH-L1) is induced by oxidative stress in podocytes and is directly involved in proteasome substrate accumulation. Mechanistically, this toxic gain-of-function is mediated by non-functional UCH-L1, which interacts with and thereby impairs proteasomes. In experimental MN, UCH-L1 becomes non-functional and MN patients with poor outcome exhibit autoantibodies with preferential reactivity to non-functional UCH-L1. Podocyte-specific deletion of UCH-L1 protects from experimental MN, whereas overexpression of non-functional UCH-L1 impairs podocyte proteostasis and drives injury in mice. In conclusion, the UPS is pathomechanistically linked to podocyte disease by aberrant proteasomal interactions of non-functional UCH-L1.


Assuntos
Glomerulonefrite Membranosa , Podócitos , Animais , Camundongos , Glomerulonefrite Membranosa/genética , Glomérulos Renais , Complexo de Endopeptidases do Proteassoma , Ubiquitina , Ubiquitina Tiolesterase/genética
8.
Chembiochem ; 24(8): e202300082, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36881517

RESUMO

Uptake and processing of antigens by antigen presenting cells (APCs) is a key step in the initiation of the adaptive immune response. Studying these processes is complex as the identification of low abundant exogenous antigens from complex cell extracts is difficult. Mass-spectrometry based proteomics - the ideal analysis tool in this case - requires methods to retrieve such molecules with high efficiency and low background. Here, we present a method for the selective and sensitive enrichment of antigenic peptides from APCs using click-antigens; antigenic proteins expressed with azidohomoalanine (Aha) in place of methionine residues. We here describe the capture of such antigens using a new covalent method namely, alkynyl functionalized PEG-based Rink amide resin, that enables capture of click-antigens via copper-catalyzed azide-alkyne [2 + 3] cycloaddition (CuAAC). The covalent nature of the thus formed linkage allows stringent washing to remove a-specific background material, prior to retrieval peptides by acid-mediated release. We successfully identified peptides from a tryptic digest of the full APC proteome containing femtomole amounts of Aha-labelled antigen, making this a promising approach for clean and selective enrichment of rare bioorthogonally modified peptides from complex mixtures.


Assuntos
Amidas , Peptídeos , Proteoma , Metionina/química , Espectrometria de Massas/métodos , Azidas/química , Alcinos/química , Cobre/química , Reação de Cicloadição , Química Click/métodos
9.
J Am Chem Soc ; 145(2): 1136-1143, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36584241

RESUMO

Phenotypic screening is a powerful approach to identify novel antibiotics, but elucidation of the targets responsible for the antimicrobial activity is often challenging in the case of compounds with a polypharmacological mode of action. Here, we show that activity-based protein profiling maps the target interaction landscape of a series of 1,3,4-oxadiazole-3-ones identified in a phenotypic screen to have high antibacterial potency against multidrug-resistant Staphylococcus aureus. In situ competitive and comparative chemical proteomics with a tailor-made activity-based probe, in combination with transposon and resistance studies, revealed several cysteine and serine hydrolases as relevant targets. Our data showcase oxadiazolones as a novel antibacterial chemotype with a polypharmacological mode of action, in which FabH, FphC, and AdhE play a central role.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Antibacterianos/química , Proteômica , Testes de Sensibilidade Microbiana , Staphylococcus aureus
10.
ACS Chem Biol ; 17(11): 3131-3139, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36279267

RESUMO

G protein-coupled receptors (GPCRs) have been known for decades as attractive drug targets. This has led to the development and approval of many ligands targeting GPCRs. Although ligand binding effects have been studied thoroughly for many GPCRs, there are multiple aspects of GPCR signaling that remain poorly understood. The reasons for this are the difficulties that are encountered upon studying GPCRs, for example, a poor solubility and low expression levels. In this work, we have managed to overcome some of these issues by developing an affinity-based probe for a prototypic GPCR, the adenosine A1 receptor (A1AR). Here, we show the design, synthesis, and biological evaluation of this probe in various biochemical assays, such as SDS-PAGE, confocal microscopy, and chemical proteomics.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Receptores Acoplados a Proteínas G/metabolismo , Ligantes , Adenosina/farmacologia
11.
J Am Chem Soc ; 144(41): 18938-18947, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36197299

RESUMO

The fish oil constituent docosahexaenoic acid (DHA, 22:6 n-3) is a signaling lipid with anti-inflammatory properties. The molecular mechanisms underlying the biological effect of DHA are poorly understood. Here, we report the design, synthesis, and application of a complementary pair of bio-orthogonal, photoreactive probes based on the polyunsaturated scaffold DHA and its oxidative metabolite 17-hydroxydocosahexaenoic acid (17-HDHA). In these probes, an alkyne serves as a handle to introduce a fluorescent reporter group or a biotin-affinity tag via copper(I)-catalyzed azide-alkyne cycloaddition. This pair of chemical probes was used to map specific targets of the omega-3 signaling lipids in primary human macrophages. Prostaglandin reductase 1 (PTGR1) was identified as an interaction partner that metabolizes 17-oxo-DHA, an oxidative metabolite of 17-HDHA. 17-oxo-DHA reduced the formation of pro-inflammatory lipids 5-HETE and LTB4 in human macrophages and neutrophils. Our results demonstrate the potential of comparative photoaffinity protein profiling for the discovery of metabolic enzymes of bioactive lipids and highlight the power of chemical proteomics to uncover new biological insights.


Assuntos
Ácidos Docosa-Hexaenoicos , Ácidos Graxos Ômega-3 , Humanos , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Azidas , Cobre/farmacologia , Biotina/farmacologia , Leucotrieno B4/farmacologia , Ácidos Graxos Ômega-3/farmacologia , Macrófagos , Óleos de Peixe/farmacologia , Anti-Inflamatórios/farmacologia , Alcinos/farmacologia , Prostaglandinas , Oxirredutases
12.
ACS Chem Biol ; 17(5): 1174-1183, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35482948

RESUMO

Anandamide or N-arachidonoylethanolamine (AEA) is a signaling lipid that modulates neurotransmitter release via activation of the type 1 cannabinoid receptor (CB1R) in the brain. Termination of anandamide signaling is thought to be mediated via a facilitated cellular reuptake process that utilizes a purported transporter protein. Recently, WOBE437 has been reported as a novel, natural product-based inhibitor of AEA reuptake that is active in cellular and in vivo models. To profile its target interaction landscape, we synthesized pac-WOBE, a photoactivatable probe derivative of WOBE437, and performed chemical proteomics in mouse neuroblastoma Neuro-2a cells. Surprisingly WOBE437, unlike the widely used selective inhibitor of AEA uptake OMDM-1, was found to increase AEA uptake in Neuro-2a cells. In line with this, WOBE437 reduced the cellular levels of AEA and related N-acylethanolamines (NAEs). Using pac-WOBE, we identified saccharopine dehydrogenase-like oxidoreductase (SCCPDH), vesicle amine transport 1 (VAT1), and ferrochelatase (FECH) as WOBE437-interacting proteins in Neuro-2a cells. Further genetic studies indicated that SCCPDH and VAT1 were not responsible for the WOBE437-induced reduction in NAE levels. Regardless of the precise mechanism of action of WOB437 in AEA transport, we have identified SSCPHD, VAT1, and FECH as unprecedented off-targets of this molecule which should be taken into account when interpreting its cellular and in vivo effects.


Assuntos
Ácidos Araquidônicos , Proteômica , Animais , Ácidos Araquidônicos/metabolismo , Ácidos Araquidônicos/farmacologia , Endocanabinoides , Camundongos , Alcamidas Poli-Insaturadas/farmacologia
13.
Org Biomol Chem ; 20(4): 877-886, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35015006

RESUMO

Exo-ß-mannosidases are a broad class of stereochemically retaining hydrolases that are essential for the breakdown of complex carbohydrate substrates found in all kingdoms of life. Yet the detection of exo-ß-mannosidases in complex biological samples remains challenging, necessitating the development of new methodologies. Cyclophellitol and its analogues selectively label the catalytic nucleophiles of retaining glycoside hydrolases, making them valuable tool compounds. Furthermore, cyclophellitol can be readily redesigned to enable the incorporation of a detection tag, generating activity-based probes (ABPs) that can be used to detect and identify specific glycosidases in complex biological samples. Towards the development of ABPs for exo-ß-mannosidases, we present a concise synthesis of ß-manno-configured cyclophellitol, cyclophellitol aziridine, and N-alkyl cyclophellitol aziridines. We show that these probes covalently label exo-ß-mannosidases from GH families 2, 5, and 164. Structural studies of the resulting complexes support a canonical mechanism-based mode of action in which the active site nucleophile attacks the pseudoanomeric centre to form a stable ester linkage, mimicking the glycosyl enzyme intermediate. Furthermore, we demonstrate activity-based protein profiling using an N-alkyl aziridine derivative by specifically labelling MANBA in mouse kidney tissue. Together, these results show that synthetic manno-configured cyclophellitol analogues hold promise for detecting exo-ß-mannosidases in biological and biomedical research.


Assuntos
Cicloexanóis/química , Sondas Moleculares/química , beta-Manosidase/análise , Cicloexanóis/síntese química , Conformação Molecular , Sondas Moleculares/síntese química , beta-Manosidase/metabolismo
14.
RSC Chem Biol ; 2(3): 855-862, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-34212151

RESUMO

Proteolysis is fundamental to many biological processes. In the immune system, it underpins the activation of the adaptive immune response: degradation of antigenic material into short peptides and presentation thereof on major histocompatibility complexes, leads to activation of T-cells. This initiates the adaptive immune response against many pathogens. Studying proteolysis is difficult, as the oft-used polypeptide reporters are susceptible to proteolytic sequestration themselves. Here we present a new approach that allows the imaging of antigen proteolysis throughout the processing pathway in an unbiased manner. By incorporating bioorthogonal functionalities into the protein in place of methionines, antigens can be followed during degradation, whilst leaving reactive sidechains open to templated and non-templated post-translational modifications, such as citrullination and carbamylation. Using this approach, we followed and imaged the post-uptake fate of the commonly used antigen ovalbumin, as well as the post-translationally citrullinated and/or carbamylated auto-antigen vinculin in rheumatoid arthritis, revealing differences in antigen processing and presentation.

15.
Blood ; 138(25): 2607-2620, 2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-34293122

RESUMO

In addition to their hemostatic role, platelets play a significant role in immunity. Once activated, platelets release extracellular vesicles (EVs) formed by the budding of their cytoplasmic membranes. Because of their heterogeneity, platelet EVs (PEVs) are thought to perform diverse functions. It is unknown, however, whether the proteasome is transferred from platelets to PEVs or whether its function is retained. We hypothesized that functional protein processing and antigen presentation machinery are transferred to PEVs by activated platelets. Using molecular and functional assays, we found that the active 20S proteasome was enriched in PEVs, along with major histocompatibility complex class I (MHC-I) and lymphocyte costimulatory molecules (CD40L and OX40L). Proteasome-containing PEVs were identified in healthy donor blood, but did not increase in platelet concentrates that caused adverse transfusion reactions. They were augmented, however, after immune complex injections in mice. The complete biodistribution of murine PEVs after injection into mice revealed that they principally reached lymphoid organs, such as spleen and lymph nodes, in addition to the bone marrow, and to a lesser extent, liver and lungs. The PEV proteasome processed exogenous ovalbumin (OVA) and loaded its antigenic peptide onto MHC-I molecules, which promoted OVA-specific CD8+ T-lymphocyte proliferation. These results suggest that PEVs contribute to adaptive immunity through cross-presentation of antigens and have privileged access to immune cells through the lymphatic system, a tissue location that is inaccessible to platelets.


Assuntos
Plaquetas/imunologia , Vesículas Extracelulares/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Complexo de Endopeptidases do Proteassoma/imunologia , Animais , Apresentação de Antígeno , Plaquetas/química , Vesículas Extracelulares/química , Antígenos de Histocompatibilidade Classe I/análise , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Complexo de Endopeptidases do Proteassoma/análise
16.
Cancer Res ; 81(17): 4581-4593, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34158378

RESUMO

The HIV-protease inhibitor nelfinavir has shown broad anticancer activity in various preclinical and clinical contexts. In patients with advanced, proteasome inhibitor (PI)-refractory multiple myeloma, nelfinavir-based therapy resulted in 65% partial response or better, suggesting that this may be a highly active chemotherapeutic option in this setting. The broad anticancer mechanism of action of nelfinavir implies that it interferes with fundamental aspects of cancer cell biology. We combined proteome-wide affinity-purification of nelfinavir-interacting proteins with genome-wide CRISPR/Cas9-based screening to identify protein partners that interact with nelfinavir in an activity-dependent manner alongside candidate genetic contributors affecting nelfinavir cytotoxicity. Nelfinavir had multiple activity-specific binding partners embedded in lipid bilayers of mitochondria and the endoplasmic reticulum. Nelfinavir affected the fluidity and composition of lipid-rich membranes, disrupted mitochondrial respiration, blocked vesicular transport, and affected the function of membrane-embedded drug efflux transporter ABCB1, triggering the integrated stress response. Sensitivity to nelfinavir was dependent on ADIPOR2, which maintains membrane fluidity by promoting fatty acid desaturation and incorporation into phospholipids. Supplementation with fatty acids prevented the nelfinavir-induced effect on mitochondrial metabolism, drug-efflux transporters, and stress-response activation. Conversely, depletion of fatty acids/cholesterol pools by the FDA-approved drug ezetimibe showed a synergistic anticancer activity with nelfinavir in vitro. These results identify the modification of lipid-rich membranes by nelfinavir as a novel mechanism of action to achieve broad anticancer activity, which may be suitable for the treatment of PI-refractory multiple myeloma. SIGNIFICANCE: Nelfinavir induces lipid bilayer stress in cellular organelles that disrupts mitochondrial respiration and transmembrane protein transport, resulting in broad anticancer activity via metabolic rewiring and activation of the unfolded protein response.


Assuntos
Inibidores da Protease de HIV/farmacologia , Lipídeos de Membrana , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Nelfinavir/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Genoma , Glucose/metabolismo , Complexo de Golgi/metabolismo , Células HEK293 , Humanos , Lipidômica , Lipídeos/química , Fosfolipídeos/química , Fosforilação , Receptores de Adiponectina/metabolismo , Transdução de Sinais
17.
Chemistry ; 27(37): 9519-9523, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-33878235

RESUMO

There is a vast genomic resource for enzymes active on carbohydrates. Lagging far behind, however, are functional chemical tools for the rapid characterization of carbohydrate-active enzymes. Activity-based probes (ABPs) offer one chemical solution to these issues with ABPs based upon cyclophellitol epoxide and aziridine covalent and irreversible inhibitors representing a potent and widespread approach. Such inhibitors for enzymes active on polysaccharides are potentially limited by the requirement for several glycosidic bonds, themselves substrates for the enzyme targets. Here, it is shown that non-hydrolysable trisaccharide can be synthesized and applied even to enzymes with challenging subsite requirements. It was found that incorporation of carbasugar moieties, which was accomplished by cuprate-assisted regioselective trans-diaxial epoxide opening of carba-mannal synthesised for this purpose, yields inactivators that act as powerful activity-based inhibitors for α-1,6 endo-mannanases. 3-D structures at 1.35-1.47 Šresolutions confirm the design rationale and binding to the enzymatic nucleophile. Carbasugar oligosaccharide cyclophellitols offer a powerful new approach for the design of robust endoglycosidase inhibitors, while the synthesis procedures presented here should allow adaptation towards activity-based endoglycosidase probes as well as configurational isosteres targeting other endoglycosidase families.


Assuntos
Carbaçúcares , Glicosídeo Hidrolases , Oligossacarídeos , Compostos de Epóxi
18.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33723037

RESUMO

The major vault protein (MVP) mediates diverse cellular responses, including cancer cell resistance to chemotherapy and protection against inflammatory responses to Pseudomonas aeruginosa Here, we report the use of photoactive probes to identify MVP as a target of the N-(3-oxo-dodecanoyl) homoserine lactone (C12), a quorum sensing signal of certain proteobacteria including P. aeruginosa. A treatment of normal and cancer cells with C12 or other N-acyl homoserine lactones (AHLs) results in rapid translocation of MVP into lipid raft (LR) membrane fractions. Like AHLs, inflammatory stimuli also induce LR-localization of MVP, but the C12 stimulation reprograms (functionalizes) bioactivity of the plasma membrane by recruiting death receptors, their apoptotic adaptors, and caspase-8 into LR. These functionalized membranes control AHL-induced signaling processes, in that MVP adjusts the protein kinase p38 pathway to attenuate programmed cell death. Since MVP is the structural core of large particles termed vaults, our findings suggest a mechanism in which MVP vaults act as sentinels that fine-tune inflammation-activated processes such as apoptotic signaling mediated by immunosurveillance cytokines including tumor necrosis factor-related apoptosis inducing ligand (TRAIL).


Assuntos
Acil-Butirolactonas/metabolismo , Apoptose , Bactérias/imunologia , Bactérias/metabolismo , Imunomodulação , Transdução de Sinais , Partículas de Ribonucleoproteínas em Forma de Abóbada/metabolismo , Fenômenos Fisiológicos Bacterianos , Cromatografia Líquida , Humanos , Vigilância Imunológica , Espectrometria de Massas , Proteômica/métodos
19.
J Am Chem Soc ; 143(5): 2423-2432, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33497208

RESUMO

Amylases are key enzymes in the processing of starch in many kingdoms of life. They are important catalysts in industrial biotechnology where they are applied in, among others, food processing and the production of detergents. In man amylases are the first enzymes in the digestion of starch to glucose and arguably also the preferred target in therapeutic strategies aimed at the treatment of type 2 diabetes patients through down-tuning glucose assimilation. Efficient and sensitive assays that report selectively on retaining amylase activities irrespective of the nature and complexity of the biomaterial studied are of great value both in finding new and effective human amylase inhibitors and in the discovery of new microbial amylases with potentially advantageous features for biotechnological application. Activity-based protein profiling (ABPP) of retaining glycosidases is inherently suited for the development of such an assay format. We here report on the design and synthesis of 1,6-epi-cyclophellitol-based pseudodisaccharides equipped with a suite of reporter entities and their use in ABPP of retaining amylases from human saliva, murine tissue as well as secretomes from fungi grown on starch. The activity and efficiency of the inhibitors and probes are substantiated by extensive biochemical analysis, and the selectivity for amylases over related retaining endoglycosidases is validated by structural studies.


Assuntos
Ensaios Enzimáticos/métodos , alfa-Amilases/metabolismo , Animais , Humanos , Camundongos , Saliva/enzimologia , alfa-Amilases/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...